skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sagal, Jacob C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The exponential suppression of macroscopic quantum tunneling (MQT) in the number of elements to be reconfigured is an essential element of broken symmetry phases. This suppression is also a core bottleneck in quantum algorithms, such as traversing an energy landscape in optimization, and adiabatic state preparation more generally. In this work, we demonstrate exponential acceleration of MQT through Floquet engineering with the application of a uniform, high frequency transverse drive field. Using the ferromagnetic phase of the transverse field Ising model in one and two dimensions as a prototypical example, we identify three phenomenological regimes as a function of drive strength. For weak drives, the system exhibits exponentially decaying tunneling rates but robust magnetic order; in the crossover regime at intermediate drive strength, we find polynomial decay of tunnelling alongside vanishing magnetic order; and at very strong drive strengths both the Rabi frequency and time-averaged magnetic order are approximately constant with increasing system size. We support these claims with extensive full wavefunction and tensor network numerical simulations, and theoretical analysis. An experimental test of these results presents a technologically important and novel scientific question accessible on NISQ-era quantum computers. 
    more » « less